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Synopsis 

A preliminary analysis of deconvolution of a nylon model is given. This is then developed to give 
the available deconvolution strain in cotton. The total extension is then given by adding the fibrillar 
strain and is compared with experimental values of breaking extension. The relation between 
convolution extension and stress is calculated in terms of structural and mechanical parameters. 
An earlier analysis derived cotton fiber modulus in terms of fibril extension and volume change. A 
new analysis shows that the introduction of shear resistance does not have a significant effect when 
rotation is prevented. However, false untwisting can occur a t  the helix reversal in cotton fibers. 
An analysis which allows for this rotation shows a strong dependence on shear modulus as well as 
fibril extension and helix angle. There is no volume change. 

INTRODUCTION 

As indicated in the introduction to part I, the earlier theoretical analysis of 
the extension of cotton and other plant fibers by Hearle1>2 has applied the 
methods of twisted yarn mechanics and treated the fiber as a solid assembly of 
molecularly oriented fibrils arranged on helical paths around the axis of a circular 
cylinder. Although the predictions show results in general agreement with ex- 
perimental observations of the form of change of modulus over a wide range of 
spiral angles, there is an uncertainty by a factor of about two in the modulus value 
at  zero angle, a lack of agreement for the differences between cotton varieties, 
and no explanation of the shape of the cotton fiber stress-strain relation, which 
curves upwards at  low strains to become stiffer as extension proceeds and be- 
comes more linear at high strains. 

Furthermore, the model ignores a number of structural features of the cotton 
fiber which are clearly of importance. First, there is an implicit assumption in 
twisted yarn mechanics that individual fibers can slide past one another to relieve 
local shear strains. In a well-bonded solid material this cannot happen, although 
with weak intermolecular bonding there might be internal slippage and loss of 
continuity. The contribution of shear energy needs to be taken into account, 
since, if appreciable, it would stiffen the fibers. Second, there is an implicit 
assumption in most twisted yarn mechanics that the extension occurs without 
any twisting or untwisting of the yarn. Untwisting would tend to occur because 
it causes an increase of length, thus relieving tensile stress, but it is prevented 
by the clamping of the twisted yarn specimen at each end. However, in the 
cotton fiber, because of the reversals, both twist directions are present, and “false 
untwisting” can occur a t  reversal points: the analysis should therefore be that 
in which free untwisting is allowed. Both of these effects were mentioned in a 
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more recent paper on yarn mechanics3 and should certainly be brought into the 
analysis for cotton fibers. However, the fiber problem is simpler in that it is 
reasonable to take the helix angle as constant through the fiber, instead of varying 
as in yarns, and the analysis can be limited to small strains and Hookean elas- 
ticity. It is therefore convenient to do the analysis independently. 

The third feature, confirmed experimentally in part I, is the importance of 
the fact that the cotton fiber is a convoluted ribbon. The removal of the con- 
volutions contributes substantially to the extension at  low stresses. 

A full mechanical analysis of a convoluted ribbon, with fibrils following dis- 
torted and flattened helical paths, would be difficult. The problem is simplified 
by separating the extension into two parts: (1) the strain due to deconvolution; 
and (2) the strain due to extension of a freely untwisting helical assembly, as- 
sumed for simplicity to be circularly cylindrical, solid, and of constant helix 
angle. 

Apart from errors due to differences between flattened and circular geometry 
in calculating the second point, this treatment ignores (a) any contribution from 
the primary wall; (b) any effect of the changes in helix angle which occur through 
the secondary wall; (c) any specific localized strains at the reversal points; (d) 
any effect of the residual lumen; (e) any effect of the disturbance of the fine 
structure on collapse of the fiber; and, indeed, (f) any differences from a fine 
structure which is assumed to consist of crystalline cellulose oriented perfectly 
along the helical lines. However, none of these factors would be expected to have 
a large effect on the extension behavior (though they may influence fracture, 
which is dependent on local extremes rather than averages), and so they are 
reasonably neglected. 

THEORETICAL ANALYSIS OF DECONVOLUTION 

Nylon Model 

It was shown in part I that a ribbon of nylon, which has been set in a twisted 
form and which has equal lengths of S and Z twist separated by a reversal, ex- 
hibits a decreasing initial modulus as the amount of twist per unit length in- 
creases. It was also shown that as the twist per unit length increases, the ex- 
tensibility increases. The increase in extensibility is due to a deconvolution or 
untwisting effect. 

Timoshenko4 has derived the following equation for the contraction in length 
of a thin rectangular strip during twisting: 

42 b2 6 
2 12 Y 

€ = - - - -  

where t is the strain, 4 is the twist in radians per unit length, b is the ribbon width, 
6 is the longitudinal stress acting on the strip, and Y is the Young’s modulus of 
the material. When a ribbon is twisted, there will be tensile forces at  the outer 
edges and compressive forces at  the center. The above relation takes account 
these forces. 

We can apply eq. (1) to the untwisting of a strip with initial twist 40 and say 
that 

t, = 4$b2/24 . (2) 
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Fig. 1. Variation of deconvolution strain E, with twist and ribbon width as calculated from eq. 
(2). 

TABLE I 
Calculated and Measured Deconvolution Strain of Nylon Strips 

t,, actual 

(rad/mm) eq. (31 of part I) 

0.100 0.0016 0.0010 
0.207 0.0072 0.0060 
0.314 0.0164 0.0140 
0.378 0.0238 0.0235 
0.408 0.0277 0.0265 

Twist 6 ,  [from (from Fig. 4 

where E ,  is the total strain resulting from complete deconvolution. The strain 
E ,  is proportional to the square of the twist and the square of the width of the 
ribbon. Figure 1 shows how the elongation (due to untwisting) of a thin ribbon 
increases as the initial twist increases for ribbons of different widths. 

For the nylon models which were described in part I, the strain resulting from 
deconvolution can be calculated from eq. (2) to give the values in Table I. By 
examining the load-extension curves in Figure 4 of part I, we can get values of 
E ,  similar to those calculated. These values are found by determining the point 
at  which a line tangent to the upper portion of the load-extension curve crosses 
the elongation axis. All of the curves for the twisted structures are shifted along 
the elongation axis by an amount equal to E, .  Agreement with calculated values 
is not expected to be exact, since there are errors of measurement and cutting 
of the strips. 

Cotton Fiber 
Ideally we can think of the cotton fiber as a perfect flat ribbon and then use 

Hebert et al.5 have shown that the measured x-ray spiral angle Q is related to 
eq. (2) to predict the extensibility due to the deconvolution effect. 

the convolution angle wg by the equation 
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Q = 0.965~0 + 18.94' (3) 
If we use this relation and convert the x-ray angles in the data of Orr et aL6 to 

convolution angles and then plot these convolution angles against the observed 
elongation for the 33 varieties of cotton given, we get the array of points shown 
in Figure 2. There is no linear relationship between elongation and the convo- 
lution angles found by Hebert's equation given above. 

As the convolution angle decreases, the points begin to level off a t  a strain of 
about 0.065. By examining several sets of data found in the literature in a similar 
manner, it can be shown that the points are on a curved line, but they can, as a 
group, be shifted to a different position along the x or y axis. These differences 
are probably due to the test method used and the method of measuring the x-ray 
angle. 

We know that at  the time of fracture, the total fiber strain E would be equal 
to ts + E, ,  where es is the strain resulting from changes in the fibrillar structure 
and E ,  is the strain from the deconvolution effect. It was shown earlier that if 
the convolutions are removed by a water treatment, the elongation to break is 
similar for the four varieties of cotton tested. The leveling of the points in Figure 
2 on the fibers with low twist is probably equal to or nearly equal to a value for 
cS, although in this case the value of cS seems too high. 

Meredith7 has given the following relation for the convolution angle WO: 

tan wo = rb12c (4) 
where b is the ribbon width and c is the pitch of the convolution (for a rotation 
of 1 8 0 O ) .  If &, is the twist in radianslunit length, c = 7rI40, then by substituting 
into eq. (3), it  is found that 

(5) $0 = 2 tan wolb 

Fig. 2. Experimental results for the relation between breaking strain and convolution angle (points) 
compared with predicted values of deconvolution strain (lines). 
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By substituting eq. (5) into (2), we find that * 

E,  = 116 tan2 wg (6) 

In practice the cotton fiber will have a variable wg along its length, unequal 
lengths of S and Z twist, some fibers more circular than ribbon shaped, and some 
fibers in the wrapped form instead of the twisted form. (Strain resulting from 
unwrapping would be greater than a simple untwisting.) All of these factors will 
contribute to a decrease or an increase in the extensibility of the fiber. 

If we assume that the form of eq. (6) can be applied to the cotton fiber, but with 
a different numerical factor, we can write the equation as 

(7) 

where X is a factor taking into account the differences mentioned in the last 
paragraph. Figure 2 shows the relation between wg and E,  with varying values 
for X ,  superimposed to fit the experimental results by shifting the zero position 
of the 6 ,  axis up to a value of E = 0.065. There is reasonable agreement between 
the two graphs when X is between 0.5 and 1.0. 

E, = X tan2 wg 

Mechanics of Deconvolution 

The previous sections refer only to the geometrical consequences of complete 
deconvolution. The extent of deconvdution under a given load remains to be 
found. An approximate analysis of deconvolution mechanics is given in Ap- 
pendix I and leads to the result 

tan wg 

(tan2 wg - Ec/X)'/2 
Stress = f = K 

where K = (gASf/.lrb2X) is a factor dependent on the shear modulus of the fiber 
Sf, the ribbon width b, the area of cross section A, X in eq. (l), and a shape factor 
g, which approaches 1 from lower values as the fiber becomes more circular. 

An estimate of the value of K can be obtained from the data on cross-sectional 
dimensions obtained by House* and on torsional properties by Meredithg for 
a number of cottons. Average values of the parameters are 

g = 0.56 

A/b2 = 0.27 

Sf = 250 kg/mm2 

From the results in Figure 2, X appears to be about 0.67, and thus we get K 
= 18 kg/mm2. However, all the parameters will vary with cotton types and 
conditions, and so a wide range of values of K can be expected. 

Figure 3(a) shows that the variation of deconvolution strain with stress for 
various values of K with a convolution angle of 1 4 O ,  and Figure 3(b) shows values 
for various convolution angles with K = 20. The important features to note are 
(1) that for low values of K ,  most of the deconvolution occurs a t  low stress and 
a concave relation is obtained, and (2) that a large increase in the deconvolution 
strain accompanies the convolution angle. 
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Fig. 3. Variation of deconvolution strain with stress: (a) for wo = 14" with various values of K; 
(b) for K = 20 with various values of WO. 

THEORETICAL ANALYSIS OF THE HELICAL STRUCTURE 

General Method and First Attempts 

The model to be analyzed is a circular cylinder in which crystalline material 
spirals around the axis with a helix angle 8 (Fig. 4). The factors which come into 
the analysis are given in Table 11. Since the geometry is similar throughout the 
cylinder, only a single element at radial distance r ,  axial length h, and helix length 
1 need be considered. Furthermore, if the situation is limited to small strains 
and Hookean deformation, all energy terms must be proportional to squares of 
strains. As stress is increased, all strains must increase proportionately. 
Whatever analysis is adopted, the final result must follow Hooke's law, and so 
we are only concerned with calculating values of fiber modulus E. 

Not all the factors listed in Table I1 are brought into every treatment (and a 
complete analysis would involve still more factors). In any particular case, the 
method of analysis is to calculate the energies in terms of the geometric variables, 
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Fig. 3. (Continued from previous page.)  

TABLE I1 
Factors in Analysis 

09 

Independent geometric variable: length h 
Dependent geometric variables: radius r and rotation p 
Strain energy terms (with related moduli): fibril extensions (Young’s modulus E f ) ,  volume 

“Stresses”: tensile stress f and torque T 
change (bulk modulus K f ) ,  and shear (shear modulus S f )  

determine the dependent geometric variables by minimizing the total strain 
energy, and then use the conservation of energy in a virtual change of the inde- 
pendent geometric variable to obtain the associated stress. 

By taking into account extension and volume changes but ignoring shear and 
rotation, Hearle2 derived the equation 

(9) 
where u is the fiber Poisson ratio (related to change in radius r ) .  If the bulk 
modulus K f  is large, there will be no volume change, u will be 0.5, and eq. (9) 
becomes 

E = Ef(cos2 8 - u sin2 8)2 + Kf(l - 2 ~ ) ~  
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(01 
Fig. 4. Helical model: (a) whole system; (b) one turn of a single element; (c)  “opened-out” di- 

agram. 

E = Ef(cos2 8 - sin2 Q2 (10) 

This equation gives a reasonable fit to results for cotton, sisal, and coir,2 al- 
though the experimental cotton values show a lot of scatter about the theoretical 
line. MeredithlO has also shown that it fits results for the dynamic modulus of 
stretched mercerized cotton fibers. 

However, the axial extension and lateral contraction cause a change in helix 
angle, which implies that the material is sheared, and in a solid material this is 
not relieved by slippage as it is between the fibers in a yarn. It must therefore 
contribute an additional energy term. Appendix B modifies the previous analysis 
given by Hearle2 in order to bring in the shear energy (without volume change) 
and leads to the following equation: 

(11) 

Jawson et al.11 have calculated that the shear modulus of crystalline cellulose 
should be between 36 and 672 kg/mm2, and Treloar12 has calculated Young’s 
modulus along the chain axis to be 5770 kg/mm2. Using these values, with CT 

about 0.5 and 8 about 22”, it is found that 

(Sf/Ef)(l + 

E = Ef[(cos2 8 - cr sin2 8)2 + (Sf/Ef)(l + sin2 8 cos2 81 

sin2 8 c0s28 << (cos2 8 - CT sin2 8)2 

Consequently the influence of the resistance to shear can be neglected and eq. 
(10) used. It will apply in circumstances where rotation of the fiber is prevented, 
as would happen on short test lengths of cotton without a reversal, and in other 
fibers without reversals or freedom of rotation. 

Model with Free Rotation 

In cotton fibers, untwisting can occur at  reversals during extension. Appendix 
C gives the analysis which takes this into account and results in the equation 

(12) 
EfSf C O S ~  8 

E =  Ef sin2 8 + Sf cos2 8 
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Through a curious trick of the mathematics, it turns out that the minimum of 
the tensile and torsional energy occurs a t  constant volume, so that the defor- 
mation necessarily occurs with CT = l/2, independent of the value of the bulk 
modulus. We note the dependence on shear modulus, with the modulus drop- 
ping to zero as Sf goes to zero. The latter effect must occur, since, with no shear 
resistance, untwisting can accommodate the length change. In other circum- 
stances there will be a balance between the shear strain energy associated with 
untwisting and the extension energy change. 

Figure 5 shows the variation of fiber modulus with helix angle for various values 
of shear modulus. The general trend of results is similar to that for Hearle’s 
earlier equation,12 also shown in Figure 5, though decreasing more rapidly for 
small spiral angles. In order to make eq. (10) fit, it was necessary to put the fibril 
Young’s modulus equal to 2300 kg/mm2 instead of Treloar’s theoretical value 
of 5700 kg/mm2. However, if the shear modulus is put within the range of 3 M 7 2  
kg/mm2, then eq. (12) would give a reasonable fit to the experimental results when 
Young’s modulus is 5700 kg/mm2: the most likely value of Sf would be about 
200 kg/mm2, based on the results for sisal, though the cotton results suggest a 
higher value. 

Figure 6 shows the large variation of fiber modulus with shear modulus for a 
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Fig. 5. Variation of modulus E with spiral angle 8. The full limes are for eq. (11) with various values 
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5 k g i l m m 2  

Fig. 6. Variation of fiber modulus with shear modulus for eq. (12) for a spiral angle of 2 2 O  with 
Ef = 5770 kg/mm2. 

spiral angle of 22". We can use this to explain the influence of moisture on the 
tensile stiffness of cotton fibers. Although the tensile modulus of crystalline 
cellulose would not alter, the shear modulus, which reflects interfibrillar bonding, 
will be considerably affected. Peirce13 has shown that the torsional rigidity of 
cotton, which depends on shear modulus, does decrease rapidly with moisture 
regain and can be related simply to the directly absorbed water, which breaks 
hydrogen bonds between cellulose molecules. Similarly, if the fiber is chemically 
crosslinked, the shear modulus will be higher and the fiber will be stiffer. 

We can also examine the quantitative value of modulus. Taking Jawson's high 
value of 672 kg/mm2 for Sf and 5770 kg/mm2 for Ef,  we get a value of 2400 kg/ 
mm2 for the modulus of an unconvoluted fiber with a spiral angle of 22". In order 
to compare this with experiments, we can use Hebert's equation (3) as before 
to convert the spiral angle to the convolution angle in Meredith's data1* and so 
plot initial modulus against convolution angle (Fig. 7). Extrapolation to zero 
convolution angle gives a modulus of 2300 kg/mm2, which agrees well with the 
predicted value. 

Combined Effect of Deconvolution and Deformation of the Helical 
Assembly 

We have now considered separately the two effects of (1) a convoluted rib- 
bon-shaped fiber with convolution reversals and (2) a cylindrical fiber with a 
reversing helical assembly of fibrils. A full treatment, which would require an 
analysis of the combined situations, would be very difficult. We therefore need 
to look for an approximate means of combining them. Under stress, both effects, 
deconvolution and deformation of the assembly, will occur, and we therefore add 
together the strains due to each mechanism. 

Taking 2400 kg/mm2 as the modulus of the uncovoluted fiber and combining 
the strains t, from this line with that of the deconvolution effect tc, we can begin 
to get a reasonable approximation, t, + tc, for the stress-strain behavior of the 
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cotton fiber (Fig. 8). In this case we have given the fiber a convolution angle of 
14' and K ,  from eq. (8), a value of 2.0, which is not unreasonable for a fiber at  
65% R.H. 

As a comparison with experimental results, Figure 9 shows stress-strain curves 
found by Meredith15 for a high-modulus St. Vincent cotton and a low-modulus 
Ishan cotton. The theoretical line for t, + t, initially falls below both curves, 
indicating a rather stronger resistance to deconvolution in the actual fibers and 
then lies between them. A fairly modest change of what are rather roughly es- 
timated parameters would bring good agreement. Also shown in Figure 9 is the 
close agreement between t,, which is the effect of the helical assembly without 
convolutions, and the stress-strain curve of one of the cotton fibers which has 
been stretched and set in water, as described in part I, in order to remove con- 
volutions. 

Figure 10 shows how moisture might affect the stress-strain curve, although 
the numerical values selected are purely illustrative and do not have any real 
justification. Curves b, e, and h are the curves in Figure 8 which are assumed 
to be correct values of E, ,  cC, and t, + cC, respectively, for a cotton fiber at  65% 
R.H. For t, at low and high humidities, we now take lines a and c with higher 
and lower moduli as given in Table 111. The effect of moisture in lowering the 
shear modulus of the fiber will also make deconvolution easier and reduce the 
value of K. However, it will also decrease the convolution angle. Possible 
combinations are shown in Table I11 and these give the curves d and f in  Figure 
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Fig. 8. Combination of deconvolution strain t, with helical deformation strain ts to give total strain 
(6s + tc). 

TABLE I11 
Illustrative Values for Different Humidities Taken from Fig. 10 

Low R.H. Medium R.H. High R.H. 
Curve E ,  kg/mm2 K w0,deg E ,  kg/mm2 K oo,deg E ,  kg/mm2 K w0,deg 

a 4400 
b 2400 
C 1200 
d 60 16' 
e 20 14" 
f 5 120 

10. Addition gives the lines g and i for the total strain. Furthermore, if it is 
assumed that the higher shear stress leads to earlier fracture, then the strength 
would change as indicated. The curves g, h, and i are in general agreement with 
those found experimentally for cotton at  0, 65, and 100% R.H. by Meredith.16 
No doubt a very close fit could be obtained by a suitable choice of parameters, 
but it is not worth trying this without independent evidence of the value of pa- 
rameters. 
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Fig. 10. Stress-strain curves at low humidity: a, c,; d, tc; g, (cs + tc); medium humidity: b, cs; 
e, c,; h, t, + E,; and high humidity: c, c,; f, cc;  i ,  c, + c,. (Values of parameters in Table 111.) 

CONCLUSION 
In part I we showed experimentally the importance of deconvolution in con- 

tributing to cotton fiber extension, and in this paper we have quantified the effect. 
In addition, a new analysis of the extension of the helical assembly has been 
carried out in order to allow for the false untwisting which can occur at reversal 
points. An important consequence of the latter effect is that the associated fiber 
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modulus is strongly dependent on the fiber shear modulus. Since Clayton and 
Peirce17 have shown that the shear modulus of cotton can fall by 10 times between 
0 and 100% R.H., the large effect of moisture on tensile properties is explained. 
The resistance to deconvolution will also be affected by the change in stiffness. 
Any feature such as resin crosslinking which increases the shear modulus (or 
rather prevents its decrease with relative humidity) will also have the effect of 
stiffening the fiber. 

The combination of the deconvolution with deformation of the helical assembly 
yields stress-strain curves of the same shape as those of cotton fibers and, when 
plausible values of parameters are inserted, of the right order of magnitude. 

I t  seems certain that the mechanisms described in this paper, namely, de- 
convolution due to untwisting or unbending of the convolutions plus an extension 
of the helical assembly with free untwisting at  reversals, are the dominant factors 
in cotton fiber extension. It is possible that a fresh study of different cotton fi- 
bers under various moisture conditions and chemical treatments that measured 
both the stress-strain curves and dynamic moduli at various strains-along with 
a careful attempt to measure the relevant parameters with, perhaps a further 
refinement of the theory-might serve to show even closer agreement. However, 
this would seem to be an academic exercise which would be unlikely to yield 
greater understanding. 

From a practical point of view, the importance of the work is in showing the 
nature of the influence of tensile modulus, shear modulus, spiral angle, and 
convolution geometry on cotton fiber mechanical properties. The tensile 
modulus is not likely to be amenable to change, but the shear modulus, spiral 
angle, and convolution geometry can be changed by previous chemical treatments 
and by the environment of the fibers. A closer look at  these effects in the light 
of the knowledge of the mechanics and the practical needs might be of value. It 
seems unlikely that the moduli can be changed by plant breeding, and the spiral 
angle also seems remarkably constant, though there has probably not been any 
attempt to breed selectively for true spiral angle. The convolution geometry 
certainly varies between cotton varieties and could be examined in relation to 
selection. 

We acknowledge the financial assistance and the advice of the International Institute for 
Cotton. 

APPENDIX A MECHANICS OF THE DECONVOLUTION 

A rough analysis of the stress-strain behavior in deconvolution can be made by assuming that the 
energy involved is the energy of untwisting and that the axial strain is given by eq. (7) derived from 
Timoshenko's relation (1). 

radiandunit length is untwisted to @, then the standard treatment, 
given for example by Morton and Hearle,lS shows that 

torque = T = gu2Sj(@o - @)/2a 

where g is a shape factor equal to 1 for a circle, A is the fiber area, and Sf is fiber shear modulus, 
and 

energyhnit volume = U = '12 torque x twist/volume 

If a fiber with an initial twist 

= gASj(@o - @ ) ' / 4 ~  

= gASf(@oZ - 2606 + d2)/4a 

From eq. (5) we have 



EXTENSION OF COTTON FIBERS. I1 1871 

40 = 2 tan(wo/b), 4 = 2 tan(w/b) 

and from eq. (7)  the deconvolution strain c, is given by 

E, = X(tan2 wo - tan2 w) 

Thus 

t a  q w = (tan2 wo - cc/X)1/2 

Hence 

gAS/ U = - [tan2 wo - 2 tan wo(tan2 wo - cc/X)1/2 + tan2 wo - E J X ]  
r b 2  

tan wo 
Stress = f = - = - 

APPENDIX B: MODIFICATION OF PREVIOUS ANALYSIS (2) 
TO ALLOW FOR SHEAR ENERGY 

Figure 11 shows the "opened-out'' diagram of Figure 4 with a tensile strain 6 and a transverse strain 
(-m). It is clear from the diagram that there is shear associated with the angular change. We see 
that 

shear strain = p = d8 

From the geometry, we have 

tan 8 = 2 r r I h  
d r  d h  

sec28 d8 = 2 r -  - 2 r r  7 
h h 

tan 8 d r  d h  
see2@ r h 

(sin 8 cos 8)(-ae - c) p = dB = - - -_= 

shear energy = U1 = %Sfp2 

= '/2S/(l + a)2 sin2 8 cos2 8c2 

From the earlier analysis (2), we have 

energy of fibril extension = '/ZEjc? 

2nr 

Fig. 11. Cylindrical helical geometry opened out flat. 
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= 1/2 E ~ c ~ ( c o s ~  I9 - u sin2 I9)2 

If it is assumed that there is no appreciable volume change, we have 

total energy = U = U1+ UZ 

= 1/2&?[Ef(cos2 0 - u sin2 0)z + Sf(l+ u)2 sin2 6 cos2 I91 

Consequently 

Modulus = E = Ef(cos2 I9 - u sin2 0)2 + S f ( l  + u ) ~  sin2 I9 cos2 0 

APPENDIX C: EXTENSION OF HELICAL ASSEMBLY WITH 
FREE UNTWISTING 

If there is no resistance to untwisting (either through free ends or at reversal points in alternating 
twist), the number of turns in a given piece changes and so h cannot be taken as the length corre- 
sponding to one turn as is usual in yarn mechanics. Instead we consider an element, as in Figure 
12, in which there are p turns in the unstrained state. The arc length is then p(2irr). For the overall 
fiber deformation, we put 

dh 
h 
dr 
r 

fiber strain = - = t 

transverse strain = - = - ut 

rotational change = - = - yt  dP 
P 

where y is a parameter relating untwisting to extension, analogous to a Poisson ratio. 
From the Pythagorean theorem we have 

l 2  = h2  + p 2 ( 4 r 2 r 2 )  

21 dl = 2hdh + 2p d p ( 4 r W )  + p 2 ( 4 r 2 r  dr)  

Therefore, 
dl 

fibril extension = q = - 
1 

h2dh + p2(47r2r2) d p  + p2(2ir2r2) dr =- 
12h l2P 12r 

q = t[cos2 I9 - (y + u) sin2 01 

There will be an energy term U1 (per unit volume) associated with fibril extension and the fiber 
modulus Ef: 

U1 = 1/2Efe3 = 1/2E/t2[~os2 I9 - (y + a) sin2 el2 
Next we have 

h 

@*dp)2ff  (r+dr) 

Fig. 12. Element with a fraction p of one turn. 
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volume of element = V = 7rr2h 

dV = 7rr2 d h  + 27rrh dr 

d V  
volume strain = - 

V 

This gives a volume energy term UZ,  dependent on the bulk modulus K: 

The change in fibril angle gives a shear strain do. From the triangle we have 

h tan % = p(27rr) 

tan % d h  + h sec2 0 d0 = 27rr dp  + 21rp dr 

Dividing the second equation by the first, we find 

d h  sec20d8 d p + &  -+-=- 
h tan0 p r 

Hence 

d8 = c sin 0 cos %(-y - u - 1) 

The shear energy terms U3, associated with the shear modulus Sf, is given by 

U3 = '/2S/(d0)' 

= 1/2Sfc2 sin2 % cos2 c(y + u + 1)2  

(The sign change is convenient and possible in a squared term.) 
The total elastic energy U is given by 

U = U 1 + U , + U 3  

= 1/z~2{Ef[cos2 0 - (y + u) sin2 $I2 + K f ( 1 -  2 ~ ) ~  + Sf sin2 % cos2 0(y + u + 1121 

Hence the term in the brackets { 1 is the fiber modulus. 

Therefore, we have 
The transverse contraction and the rotation will adjust freely to give a minimum of energy. 

= c2{~f[cos2 0 - (y + u) sin201(-sin2 0) + ~ f ( 1  - 2u)(-2) + S/ sin2 0 cos2 ~ ( y  + u + 1)) 
= O  

(Ef - Sf - ySf) sin2 0 cos2 0 - yEf sin4 0 + 2Kf 
Ef sin4 8 + Sf sin2 0 cos2 % + 4Kf 

u = -  

E '{Ef [COS' 0 - (Y + u) sin2 01 ( -sin2 8 )  t Sf sin2 0 cos2 %(y + u + 111 
= O  

(Ef - Sf )  cos2 0 - y(Ef sin2 0 + Sf COG 8 )  
Ef sin2 0 + Sf cos2 0 

U =  

If we solve these two expressions for u simultaneously, we get 

u = 112 

(Ef  - Sf)  COS' 0 1 -- 
= E/ sin2 0 + S, cos2 0 2 

Remarkably, when free untwisting is allowed, the deformation occurs at constant volume, whatever 
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the value of the bulk modulus, which does not occur in the final equations. Substitution in the ex- 
pression in brackets { ) for the modulus gives 

E/S/ COS' 0 
Ef  sin2 0 + S/ cos2 0 

E =  
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